ÁCIDO LÁCTICO

 

 

PRINCIPAL

INTRODUCCIÓN

ÁCIDO LÁCTICO

PLA

PLA/SBP

EMPRESAS

SITIOS DE INTERÉS

GLOSARIO

COMENTARIOS

BIBLIOGRAFÍA

 

PRODUCCIÓN BIOTECNOLÓGICA DE ÁCIDO LÁCTICO

   El ácido láctico tiene un amplio rango de aplicaciones en la industria alimenticia, química, farmacéutica, química y cosmética, entre otras. Recientemente se ha acelerado la investigación en L (+) y D (-), ácido láctico, por vía biotecnológica, debido a su posibilidad de transformación en poli-láctico biodegradable (PLA). Los esfuerzos en la investigación del ácido láctico, están enfocados a disminuir los costes de producción a través de nuevos sustratos, nuevas tecnologías de fermentación y separación, y nuevos microorganismos capaces de alcanzar altas concentraciones de ácido láctico, altos rendimientos y altas productividades.

 

INTRODUCCIÓN

   El ácido láctico fue descubierto en 1780 por el químico sueco Scheele, quien lo aisló de leche agria, fue reconocido como producto de fermentación por Blonodeaur en 1847 y tan solo en 1881, Littlelon inicia la fermentación a escala industrial. Es un compuesto muy versátil utilizado en la industria química, farmacéutica, de alimentos y de plásticos

   Existen dos isómeros ópticos, el D (-), láctico y el L (+) láctico y una forma racémica constituida por fracciones equimolares  de las formas D (-) y L (+). A diferencia del isómero D (-), la configuración L (+) es metabolizada por el organismo humano.

   Ambas formas isoméricas del ácido láctico pueden ser polimerizadas y se pueden producir polímeros con diferentes propiedades dependiendo de la composición.

 

Propiedades del ácido láctico

Fórmula

C3H6O3

Peso molecular

90,08

Índice de refracción

1,4414

Punto de fusión

L(+) y D(-) 52,8 a 54 ºC

Punto de ebullición

125-140 ºC

Gravedad específica

1206

Calor de combustión

3616 cal/g

Viscosidad

40,33 mNsm-2

Densidad

1,249

Constante dieléctrica

22ε

   

 

PRODUCCIÓN INDUSTRIAL

   El ácido láctico puede ser obtenido por vía química o biotecnológica. La producción química, esta basada en la reacción de acetaldehído con ácido cianhídrico (HCN) para dar lactonitrilo, el cual puede ser hidrolizado a ácido láctico; otro tipo de reacción se basa en la reacción a alta presión de acetaldehído con monóxido de carbono y agua en presencia de ácido sulfúrico como catalizador. La síntesis química tiene la desventaja que el ácido láctico producido es una mezcla de D y L ácido láctico óptimamente inactivo, por lo cual el 90% del ácido láctico producido en el mundo es elaborado por vía biotecnológica.

   La producción biotecnológica está basada en la fermentación de sustratos ricos en carbohidratos por bacterias u hongos y tiene la ventaja de formar enantiómeros D (-) o L (+), óptimamente activos. La producción biotecnológica depende del tipo de  microorganismo utilizado, la inmovilización o recirculación del microorganismo, el pH, la temperatura, la fuente de carbono, la fuente de nitrógeno, el modo de fermentación empleado y la formación de subproductos.

   Las bacterias que pueden utilizarse para la producción de ácido láctico son cocos y bacilos Gram positivos, anaerobios facultativos, no esporulados, inmóviles y catalasa negativo, pertenecientes a los géneros Lactobacillus, Carnobacterium, Leuconostc, Tetragenococus,…

   Las bacterias del ácido láctico (LAB) tienen requerimientos nutricionales complejos debido a su limitada habilidad para sintetizar aminoácidos y vitamina B. La mayoría de LAB producen únicamente una forma isomérica de ácido láctico. Las especies de los géneros Aerococcus, Carnobacterium, producen únicamente isómeros L, mientras las especies del género Leuconostc producen únicamente isómeros D. Sin embargo, algunas LAB producen formas racémicas donde el isómero predominante depende de cambios en la aireación, cantidad de NaCl, tipo de fermentación, incrementos en el pH y concentración de sustrato.

   Acorde con los productos finales de la fermentación de los hidratos de carbono las LAB se dividen en homofermentativas y heterofermentativas. En el metabolismo homofermentativo, se produce predominantemente ácido láctico y las bacterias usan la hexosa. Algunas de las bacterias que tienen este metabolismo son delbruekii, helveticus, etc. La estequiometría clásica de la fermentación homoláctica es la siguiente:

 

C6H12O6 + 2 ADP + 2 Pi               2CH3-CHOH-COOH + 2 ATP

 

   En la fermentación heteroláctica hay formación de xilulosa-5 fosfato por el sistema de la glucosa-6 fosfato deshidrogenada. La estequimetría heteroláctica a partir de glucosa es la siguiente:

 

C6H12O6 + 2 ADP + 2 Pi               CH3-CHOH-COOH + CH3CH2OH+CO2+ 2ATP

 

   El ácido láctico además puede ser producido en mayor o menor proporción por bacterias que no suelen incluirse en el grupo láctico, tal es el caso de Bifidobacterium, algunas especies de Bacillus, Clostridium,…

   De las LAB, Lactobacillus delbrueckii es el microorganismo más utilizado en la producción a gran escala de ácido láctico, ya que tiene la ventaja de producir únicamente isómeros L (+), consumir eficientemente glucosa y ser un microorganismo termófilo con temperatura óptima de crecimiento 41.5ºC, lo que reduce costes de enfriamiento y esterilización, así como riesgos de contaminación microbiológica en el fermentador. Este microorganismo crece bien a un pH entre 5,5 y 6,5 por lo que el ácido producido debe ser continuamente neutralizado.

   Los hongos utilizados en la producción de ácido láctico son mohos y levaduras que pertenecen a los géneros Rhizopus, Zymomonas, Saccharomyces. Desde finales de los años 80, se ha venido estudiando ampliamente Rhizopus oryzae para la producción biotecnológica de ácido láctico ya que presenta la ventaja de que no requiere fuente de nitrógeno orgánico para su crecimiento, tiene la habilidad de producir directamente grandes cantidades de L (+) ácido láctico de almidón y es fácilmente separado del medio de fermentación en el proceso de recuperación y purificación. Sin embargo la dificultad que presenta la producción de ácido láctico con moho es su forma física ya que el gran tamaño de los micelios o sus agregados puede provocar un aumento en la viscosidad del medio de fermentación lo que causa un alto incremento en la demanda de oxígeno y resistencia a la transferencia de masa en el proceso fermentativo, lo que a su vez aumenta los tiempos de fermentación, aumenta los subproductos formados especialmente etanol, y disminuye los rendimientos en conversión.

   En la producción biotecnológica de ácido láctico con bacterias o con hongos, se utilizan como sustratos, sacarosa proveniente de la caña de azúcar y de la remolacha azucarera, pero debido a que el azúcar puro es de alto coste se han venido investigando otros sustratos (desechos agrícolas)  para disminuir los costes de producción. Sin embargo la producción de ácido láctico de estas fuentes renovables requiere de los siguientes pasos:

1) Hidrólisis del sustrato hasta azúcares fermentables.

2) Fermentación de azúcares a ácido láctico.

3) Separación de biomasa y partículas sólidas del medio de fermentación.

4)  Purificación del ácido láctico obtenido.

 

   En la obtención comercial con bacterias lácticas, al sustrato puro se le adiciona una fuente de vitaminas y de cofactores, se utiliza una mezcla de de 10 a 15% de glucosa, cantidades menores de fosfato de amonio, extracto de levadura y 10% neutralizante. El medio se inocula y se agita sin aireación para optimizar la neutralización del ácido formado. La fermentación dura entre 2 a 4 días y se termina cuando todo el azúcar es consumido, con el fin de facilitar la purificación. Al final de la fermentación el medio es ajustado a pH 10 y si se utiliza carbonato de calcio, el medio es calentado para solubilizar el lactato de calcio y coagular proteínas presentes. Posteriormente el medio se filtra para eliminar sustancias insolubles, así como biomasa. El ácido libre se obtiene por adición de ácido sulfúrico seguido de filtración para eliminar el sulfato de calcio formado. El ácido láctico es entonces concentrado por evaporación.

   Debido a que el tipo de fermentación descrito  ( en discontinuo) está limitado por el daño que sufren las células por la acumulación en el medio de fermentación de la forma no disociada del ácido, se han investigado otros modos de fermentación como son la fermentación en discontinuo con alimentación intermitente y la fermentación en continuo y se han desarrollado una serie de procesos basados en la eliminación del producto por filtración y concentración de las células usando una unidad de retención. La fermentación en discontinuo con alimentación intermitente es un proceso en el cual el birreactor es alimentado de continua o secuencialmente con sustrato, sin la eliminación del medio de fermentación, mientras que la fermentación en continuo la corriente de producto posee la misma composición que el líquido presente en el reactor. La fermentación en continuo da en la mayoría de los casos mayores concentraciones y mayores rendimientos, comparado con la fermentación en discontinuo.

 

RECUPERACIÓN Y PURIFICACIÓN

   La separación, purificación y preconcentración del ácido láctico obtenido de los medios de fermentación es difícil debido a la alta afinidad del ácido por el agua y a su baja volatilidad. En la mayoría de los procesos, el ácido láctico es recuperado bajo la forma de lactato de calcio, y los tratamientos posteriores van a depender de la pureza deseada e incluyen: tratamiento con carbón activo, purificación con resinas de intercambio iónico, extracción con solventes o esterificación con metanol seguido por destilación e hidrólisis.

   Sin embargo, con el fin de limpiar los residuos generados en el proceso, se han desarrollado otros métodos de recuperación y purificación que incluyen clarificación de medios de fermentación por microfiltración con flujo cruzado, tratamientos con resinas, entre otras.

   Comparado con técnicas de adsorción, precipitación o filtración por membranas, el método de extracción por solventes con componentes organofosforados, aminas terciarias o amonios cuaternarios, es más selectivo y favorece la eficacia del proceso y la pureza del producto obtenido. Sin embargo los solventes orgánicos plantean dos problemas: son tóxicos para los microorganismos y el pH óptimo de la extracción y de la fermentación no coinciden, por lo que se ha propuesto el uso de membranas poliméricas de Triacetato de celulosa con sales de amonio cuaternario como fase móvil y o-nitrofeniloctil éter como plastificante, para la separación in situ de ácido láctico.

   En cuanto a la electrodiálisis, es un proceso que ha sido diseñado para separar, purificar y concentrar sales de ácidos de medios de fermentación. El método permite separar el ácido a medida que se produce, eliminando la necesidad de agregar agentes neutralizantes. La concentración de ácido en el medio de cultivo por este sistema permanece en niveles muy bajos, por lo cual se ha evaluado una modificación al mismo que emplea la electodiálisis periódica acoplada a un sistema de control de pH, lo que hace que se aumente la concentración de lactato en el medio y se disminuyan los tiempos de fermentación. Con este método de fermentación se aumenta la productividad 1,5 veces respecto a la electrodiálisis convencional.

   La electrodiálisis puede además utilizarse después de la fermentación tipo batch y más recientemente se han propuestos sistemas en continuo que tienen la ventaja de mantener constante el volumen del medio de fermentación y de disminuir las pérdidas de glucosa en la solución recuperada, por este método se logra obtener 19,5 veces más ácido láctico que con la electrodiálisis convencional y 9,7 veces más ácido láctico comparado con la electrodiálisis intermitente.

   A pesar de todos estos avances la mayoría de industrias productoras de ácido láctico emplean aún los procesos de precipitación para la purificación de ácido láctico, lo cual genera una tonelada de yeso por cada tonelada de ácido láctico producido que se desecha al ambiente como residuo.

 

USOS Y ESPECIFICACIONES

   El ácido láctico y sus derivados como  sales y ésteres son ampliamente utilizados en la industria alimenticia, química, farmacéuticas, del plástico, textil, la agricultura, alimentación animal entre otros.

   En la industria alimenticia se usa como acidulante y conservante. Las industrias químicas lo utilizan como solubilizador y como agente controlador de pH. En la producción de pinturas y resinas, puede ser utilizado como solvente biodegradable. En la industria de plásticos es utilizado como precursor del ácido poliláctico (PLA), un polímero biodegradable con interesantes usos en la industria y la medicina; se considera ésta la principal aplicación del ácido y la causa por la cual a aumentado considerablemente su demanda.

 

CONCLUSIONES

   A pesar de que la producción industrial de ácido láctico se inició hace más de 100 años, la investigación sigue aún muy activa, básicamente ésto es debido a dos factores: las nuevas aplicaciones que se le han encontrado al ácido por la posibilidad que ofrece de polimerizarse y producir plásticos biodegradables; y el coste, que resulta alto para aplicaciones a gran escala. Los investigadores proponen disminuir los costes de producción mediante el empleo de sustratos más baratos como desechos agroindustriales, a través del uso de microorganismos más eficientes y mediante la configuración de procesos integrados de purificación que permiten obtener L (+) y D (-) ácido láctico puro. De otro lado, la eficacia del proceso biotecnológico que se mide en términos de concentración de ácido láctico, rendimiento del producto relacionado con el sustrato consumido y velocidad de producción, es muy variado y éstos parámetros están marcadamente dependientes del microorganismo utilizado, de la fuente de carbono, de la fuente de nitrógeno, del pH, la temperatura y del modo de fermentación.