ESTRUCTURA QUÍMICA DE LOS POLICARBONATOS.


Modelo .pdb de la molécula de policarbonato

En este apartado vamos a ver la formulación básica de los policarbonatos, su síntesis y estructura química. Concretamente vamos a realizar ese análisis para el policarbonato de bisfenol A, que es el que más se comercializa. Bayer lo hace bajo el nombre Makrolon® y General Electric bajo el nombre Lexan®.  Las dos moléculas principales que intervienen en la síntesis del policarbonato serán las  de bisfenol A y fosgeno.
Vamos a ocuparnos en primer lugar del bisfenol A y luego hablaremos del fosgeno. El primer paso para obtener un policarbonato es tratar el bisfenol A con NaOH. El grupo hidroxilo va a cumplir la función que cumplen los álcalis, tomando un protón del bisfenol A. Cuando esto sucede, el grupo hidroxilo se transforma en una molécula de agua y el bisfenol A, que es un alcohol, se encontrará en su forma de sal sódica. Luego, sobre el grupo alcohol del bisfenol A, ocurre la misma reacción otra vez.

Ahora que el bisfenol A es una sal, puede actuar sobre el fosgeno. Podemos ver que el oxígeno de la sal de bisfenol A tiene ahora una carga negativa. Esto quiere decir que puede donar un par de electrones al átomo de carbono del fosgeno. Tenga en cuenta que ese carbono se encuentra deficiente de electrones, porque es vecino del oxígeno electronegativo. Cuando ese átomo de carbono gana un nuevo par electrónico proveniente de la sal de bisfenol A, deja escapar uno de los pares que estaba compartiendo en forma no equitativa con el oxígeno del carbonilo. Este par quedará sobre ese oxígeno, dándole una carga negativa.

La reacción no se para en este punto, sino que los electrones de ese oxígeno volverán hacia el carbono, restituyendo el doble enlace carbono-oxígeno. De hecho, sabemos que el carbono no puede compartir diez electrones, de modo que tiene que deshacerse de dos. Y los dos electrones que se van a embarcar, son el par que el carbono había estado compartiendo con uno de los átomos de cloro. Así, el cloro y sus electrones serán expulsados de la molécula. La molécula que se forma ahora se llama cloroformato. El ion cloruro que fue expulsado, se unirá con ese ion sodio que había estado rondando silenciosamente durante toda la conmoción, para formar NaCl.

El cloroformato puede ser atacado por otra molécula de bisfenol A, tal como lo hizo el fosgeno. Y una segunda molécula de bisfenol A puede atacar tal como lo hizo la primera.

Y lo hace a través de un intermediario similar y un juego electrónico similar al que vimos, para obtener el carbonato constituido por las especies mostradas.

Después de esto, los grupos salinos de la gran molécula pueden reaccionar con más fosgeno y de ese modo, la molécula crece hasta que obtenemos el policarbonato.

Hasta ahora hemos estado hablando de sólo un policarbonato, el policarbonato de bisfenol A. Pero hay otro policarbonato con un uso bastante importante ya que es el policarbonato que se utiliza para hacer lentes ultra-livianas. Para las personas con vista realmente mala, si las lentes fueran hechas de cristal, serían tan gruesas que serían demasiado pesadas para usar. Este otro policarbonato permite solventar no sólo el problema del peso (ya que es mucho más liviano que el cristal), sino que también permite utilizar cristales más finos, ya que tiene un índice de refracción mucho más alto. Eso significa que la luz se refracta más que en el cristal y de este modo los cristales ya no necesitan ser tan gruesos.

Este policarbonato es muy diferente del policarbonato del bisfenol A. Se sintetiza a partir de este monómero: material entrecruzado parecido a éste:

Se puede observar que tiene dos grupos alílicos en los extremos. Estos grupos alílicos contienen enlaces dobles carbono-carbono. Esto significa que pueden polimerizar por una polimerización vinílica por radicales libres. Obviamente, hay dos grupos alílicos en cada monómero. Esos grupos se convertirán en parte de distintas cadenas poliméricas. De esta forma, todas las cadenas se unirán unas con otras para formar un material entrecruzado parecido a éste:

Como usted puede ver, los grupos que contienen carbonato (mostrados en azul) forman los entrucruzamientos entre las cadenas poliméricas (mostradas en rojo). Este entrecruzamiento hace el material muy fuerte, de modo que no se romperá tan fácilmente como el cristal. ¡Esto es realmente importante para los cristales de las gafas de los niños! 

Hay una diferencia fundamental entre los dos tipos de policarbonato descritos aquí, que debe ser señalada. El policarbonato de bisfenol A es un termoplástico. Esto significa que puede ser moldeado en caliente. Pero el policarbonato usado en los cristales de las gafas es un termorrígido. Los termorrígidos no funden y no pueden moldearse nuevamente. Se utilizan para hacer objetos realmente fuertes y resistentes al calor.