ESTADO GASEOSO

1.- En un día de verano, con una temperatura ambiente de 35 °C, se estropea el sistema de refrigeración de un depósito que contiene Helio refrigerado a –25 °C y 15 atm. Si el depósito es capaz de soportar una presión interior de 20 atm: a) ¿habrá rotura de las paredes del depósito?, b) ¿hasta que valor podrá aumentar la temperatura sin peligro?.

Solución: a) P $(35^{\circ}C) = 18,63$ atm.; b) T = 330,6 K

2.- ¿Qué peso de oxígeno ocupará a 0 °C y 760 torr el mismo volumen que 5,0 g de N_2 a 30 °C y 850 torr?

Solución: m = 5,7 g.

3.- Una muestra de oxígeno, contenida en un recipiente de 1 l, ejerce una presión de 800 mm Hg a 25 °C. En otro recipiente de 3 l una muestra de Nitrógeno ejerce una presión de 1,5 atm a 50 °C. Se mezclan las dos muestras introduciéndolas en un frasco de 9 l a 40 °C. Calcular: a) la presión parcial de cada gas y, b) la presión total.

Solución: $P_{N2} = 0.484$ atm, $P_{O2} = 0.122$ atm.; b) $P_{T} = 0.607$ atm.

4.- En un recipiente de volumen fijo se introducen 10 g de NO_2 , que ejercen una presión de 430 mm Hg a una determinada temperatura, T. Si se añaden 3 g de CO_2 y 6 de N_2 , y se duplica la temperatura: a) ¿cual será la presión parcial de cada gas en la mezcla? y b) ¿cual la presión total?.

Solución: $P_{co2} = 0.355$ atm; $P_{N2} = 1.115$ atm; $P_{No2} = 1.13$ atm.

5.- Una mezcla de Oxígeno e Hidrógeno, con un 15 % en peso de este último, se encuentra en un recipiente cerrado a 120 °C y 1 atm. Calcular: a) la presión parcial de cada gas y b) la densidad de la mezcla.

Solución: a) P_{H2} = 0,738 atm., P_{o2} = 0,262 atm.; b) ρ = 0,306 g/l.

- **6.-** Un recipiente de 5 l contiene aire a 40 °C y 716,2 mm Hg con una humedad relativa del 70 %. Se comprime el recipiente hasta el punto de rocío (aire totalmente saturado de vapor de agua), siendo la presión de 786 mm Hg y la temperatura de 30 °C. Calcular: a) el volumen final del recipiente y b) los moles de agua que se condensan. Datos: P° $_{agua}$ (40 °C) = 7,38x10³ Pa; P° $_{agua}$ (30 °C) = 4,24x10³ Pa; 1 atm. = 101325 Pa *Solución:* a) V = 4,34 l; b) n= 2,6x10⁻³.
- **7.-** Calcular el volumen que ocupan 2 moles de dietilamina, $(C_2H_5)_2NH$, a 90 °C y 700 torr. a = 19,5 atm. l^2/mol^2 ; b = 0,1392 l/mol. Solución: $V_{real} = 63,688$ l.
- **8.-** Calcular y comparar las densidades del Hidrógeno, considerándolo gas real y gas ideal, a 500 atm y 200 °C

a (H₂) = 0,24 atm. l^2/mol^2 ; b = 0,0267 l/mol. Solución = ρ_{ideal} = 25,78 g/l; ρ_{real} = 19,8627 g/l