Agenda

DuPont’s Renewable Sourced Materials for sustainable growth

- Cerenol™ - A new family of high performance bio based polyols

- We would like to learn about your needs and find opportunities to work together in creating bio based solutions to your customers
Bio Based Materials group is founded on one of DuPont’s core strategic growth initiatives:

- To reduce our environmental footprint

<table>
<thead>
<tr>
<th>Metric</th>
<th>2010 Goals</th>
<th>2004 Data vs 1990</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenhouse gas emissions</td>
<td>< 65%</td>
<td>< 72%</td>
</tr>
<tr>
<td>Revenue from non-depletable raw materials</td>
<td>25%</td>
<td>17%</td>
</tr>
<tr>
<td>Energy consumption</td>
<td>Flat</td>
<td>94%</td>
</tr>
<tr>
<td>Energy from renewable sources</td>
<td>10%</td>
<td>5%</td>
</tr>
</tbody>
</table>

*Incl. Invista
Cerenol™ is part of the first generation of DuPont’s bio-based innovation

The right science at the right time

Energy: bio-fuels

Biomass feedstock

Metabolic engineering

Materials:
- DuPont Sorona®
- DuPont Cerenol™

Chemicals
- Ethanol
- Bio-Butanol
- Bio-PDO™
Bio-PDO™ serves as a building block for diverse applications and markets

- Sorona®

Zemea™ & Sustiva™ Propanediols*

- Cerenol™

*Zemea™ & Sustiva™ are registered trademarks of the DuPont Tate & Lyle Bio Products Company
Agenda

• DuPont’s Renewable Sourced Materials for sustainable growth

Cerenol™ - A new family of high performance bio based polyols

• We would like to learn about your needs and find opportunities to work together in creating bio based solutions to your customers
Cerenol™ is DuPont’s registered brand name for a new family of Bio Based Polyols from renewable materials.

Biomass Feed Stock → Bio-PDO™ → Cerenol™
Cerenol™ Polyols Overview

• DuPont is committed to Cerenol™ polyols and Cerenol™ - based polymers

• There are a broad range of applications and markets for Cerenol™ polyols

• DuPont Cerenol™ has patents on compositions, processes and end uses

• Cerenol™ has a unique chemistry that results in value added properties

• Cerenol™ products and manufacturing process are inherently environmentally friendly

• A number of Cerenol™ products are in commercial development and will be available soon.
DuPont is committed to Cerenol™: Investing to ensure PDO supply
DuPont is committed to Cerenol™: Leveraging on existing businesses

• New DuPont Car Finishes Will Be Tougher Due to Polymers Made With Renewable Resources

 - WILMINGTON, Del., June 19, 2006 – A new generation of tough, chip-resistant DuPont automotive refinish products, reinforced with newly invented bio-based polymers, could be available for use in auto collision repair centers by 2008. The new coatings will be made using renewably sourced intermediate ingredients that are biodegradable and virtually non-toxic.

• DuPont To Produce New High-Performance Polymers Made with Renewable Resources.

Broad range of applications and markets

Automotive Refinishing Inkjet Inks Personal Care Lube and Greases

Elastic fibers A variety of articles for automotive and sporting end uses
DuPont Cerenol™ has a strong patent position on compositions, processes and end uses

More than 60 US Patent Applications since 2000

- To be filed
- Filed
- Published
- Granted
Cerenol™ has a unique chemistry that results in value added properties

Polycondensation

\[
\text{HO} - \text{CH}_2 - \text{CH}_2 - \text{OH} \quad \rightarrow \quad \text{HO} - \left(\text{O} - \text{CH}_2 - \text{CH}_2\right)_n - \text{OH}
\]

1,3-Propanediol

Polytrimethylene ether glycol

Ring opening polymerization

\[
\text{CH}_2 - \text{CH}_2 - \text{O} \quad \rightarrow \quad \text{HO} - \left(\text{O} - \text{CH}_2 - \text{CH}_2\right)_n - \text{OH}
\]

Oxetane

Polytrimethylene ether glycol
Cerenol™ has a unique chemistry that results in value added properties (cont.)

Value Added Properties

- Liquids with low or no melting
- Hygroscopic / hydrophilic/ lipophilic
- Amorphous / semicrystalline
- Low volatile, ionic/non-ionic, neutral
- Water soluble/insoluble
- Low toxicity & Bio-degradable
- Hydrolysis resistant
- Easier to handle and process
Cerenol™ products and manufacturing process are inherently environmentally friendly

Very safe to manufacture

- **Batch Process**
 - Polymerization & Purification methods

- **Continuous Process**
 - Pilot scale demo in 2000

- Grades: 500-3000 MW
Cerenol™ products and manufacturing process are inherently environmentally friendly (cont.)

Conventional polyol ingredients versus Cerenol™ ingredient

- Renewable source
- Low volatility
- Non-flammable
- High flash point
- Less reactive
- Low toxicity
- High oxidative stability
- Easier to handle, process and transport
Cerenol™ products and manufacturing process are inherently environmentally friendly (cont.)

Product Low Toxicity

- Polymer grade Cerenol™ has been tested
 - Not a skin and eye irritant
 - Not a skin sensitizer
 - Has low acute oral mammalian toxicity (LD50 > 2000 mg/kg)

- Human patch test results indicate specialty grade Cerenol™ is not
 - a primary skin irritant
 - a fatiguing agent and
 - a sensitizing agent
Cerenol™ products and manufacturing process are inherently environmentally friendly (cont.)

Biodegradability

Inherent Biodegradability

- **PO3G**
- **Diethylene glycol**

Ready Biodegradability

- **Test Substance Average**
- **Toxicity Control**
- **Control Substance**

35% degradation in 28 days and **45% degradation in 35 days**
A number of Cerenol™ products are in commercial development and will be available soon.

1. Polytrimethylene ether glycol homopolymers

2. Polytrimethylene ether glycol copolymers

3. Thermoplastic Elastomers (TPE)
Polytrimethylene ether glycol - homopolymers

- A Linear Polyether glycol with Odd number of Carbons
- Unusually Compact Chains
- Highly flexible molecules
- Semicrystalline polymer with slower crystallization rates
- Low melting points
- Reactive hydroxyl end groups
- Excellent thermo-oxidative stability
- Very low toxicity
- Biodegradable
- Ideal soft segment for block copolymers
Typical Specs of Cerenol™ Polyols

<table>
<thead>
<tr>
<th>Property</th>
<th>Cerenol™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight</td>
<td>500 - 3000</td>
</tr>
<tr>
<td>Hydroxyl number</td>
<td>224 - 37</td>
</tr>
<tr>
<td>Alkalinity, meq/30kg</td>
<td>-2.0 to 1.0</td>
</tr>
<tr>
<td>Unsaturation, meq/g</td>
<td>< 0.02</td>
</tr>
<tr>
<td>Color, APHA</td>
<td>70 max</td>
</tr>
<tr>
<td>Melting Point, °C</td>
<td>10 – 22</td>
</tr>
<tr>
<td>Density, g/cc (40°C)</td>
<td>1.02 – 1.03</td>
</tr>
<tr>
<td>Viscosity, cP (40°C)</td>
<td>100 – 1500</td>
</tr>
</tbody>
</table>
Poly(trimethylene ether glycol copolymers

- Poly(trimethylene-co-ethylene ether) glycol
 - (US Patent Publication 2005/0176921)

- Poly(trimethylene ether ester) glycols
 - (US Patent Nos: 6,316,586; 6,608,168)

Copolyols alter the properties of homopolymers

- water insoluble to water soluble
- crystalline to amorphous
- enhance low temperature properties
Bio Based Lubricants with excellent lube properties (US Patent Publication 2005/0014661)

- High viscosity index
- Low pour points
- High flash and fire points
- Excellent low temperature properties
- High load index
- Low coefficient of friction
- High Load carrying capacity
- Very good thermo-oxidative stability
- Water soluble/insoluble
Thermoplastic Elastomers (TPE)

1. Polyetherester Molding Resins
 - PBT/Cerenol™
 - PTT(Sorona®)/Cerenol™
 - Hytrels® with renewable materials

2. Polyetherester Block-amide Molding Resins
 - Thermoplastic molded and formed products

3. Polyurethane/urethane-urea (TPU)
 - Includes cast elastomers, spandex fiber
High Performance Cerenol™ Based Polyether-esters (US Patents 6,599,625; 6,562,457; 2005/0282966)

Flexible Films

- Tenacity
- Elongation
- TM4
- Stress Decay
- Set

Graph showing performance metrics for 4GT-PO4G and 4GT-PO3G.
Cerenol™ Based Polyetherester Amides
(US Patent No: 6,590,065)

Properties

<table>
<thead>
<tr>
<th>NB#</th>
<th>Wt. % HS</th>
<th>Hard Segment</th>
<th>Soft Segment</th>
<th>Tenacity</th>
<th>Eb (%)</th>
<th>UP 300/200</th>
<th>% Set 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pebax® 3533</td>
<td>25</td>
<td>N12</td>
<td>PO4G</td>
<td>1.75</td>
<td>202</td>
<td>~0</td>
<td>>>113</td>
</tr>
<tr>
<td>E97700-119</td>
<td>25</td>
<td>N12</td>
<td>PO3G</td>
<td>1.02</td>
<td>460</td>
<td>108</td>
<td>38</td>
</tr>
</tbody>
</table>

Pebax® is a registered trademark of Arkema, Inc.
Performance Comparisons of Polyurethane / Ureas (US Patent No's: 6,852,823; 6,946,539)

Viscosity of Polyols and Polyurethane Prepolymers:

- Ease of handling and processability
Performance of Cerenol™-based and conventional polyurethanes

Superior performance yet as flexible as PPG-urethanes

- Hardness
- Tensile
- Elongation
- Tear
- Resilience
- Comp Set
Performance of Cerenol™- based and specialty polyurethanes

Cerenol™ Based Urethane is highly elastic and tougher
Cerenol™ based coating formulations
(US Patent 6,875,514)

Excellent chip resistance performance without sacrificing other properties
Agenda

- DuPont’s Renewable Sourced Materials for sustainable growth

- Cerenol™ - A new family of high performance bio based polyols

We would like to learn about your needs and find opportunities to work together in creating bio based solutions to your customers
We would like to learn about your needs and find opportunities to work together

• Selective grades of Cerenol™ will be available very soon to our internal business units and potential external partners

• We would like to learn about your bio based polyol and polymer needs

• We would like to explore new opportunities by working together
DuPont Cerenol™ contacts

- Ray W. Miller
 - Cerenol™ Business Director
 - (302-999-4924)

- Hector Sandoval
 - Global Product Manager
 - (302-999-3075)