PRÁCTICA-4

PROPIEDADES ÁCIDO-BASE DE LAS SALES: HIDRÓLISIS

En esta práctica mediremos el pH (carácter ácido, básico o neutro) de disoluciones acuosas de diversas sales, y comprobaremos que estas disoluciones pueden ser no sólo neutras sino también ácidas o básicas.

FUNDAMENTO DE LA PRÁCTICA

Muchas disoluciones salinas tienen un pH neutro, pero otras pueden tener un pH ácido o básico. Por ejemplo una disolución de cloruro de sodio (NaCl, sal común) tiene un pH igual a 7, pero una disolución de nitrato de amonio (NH₄NO₃) tiene un pH ácido y una de fluoruro de potasio (KF) tiene pH básico. Esto se debe a que las sales iónicas son *electrolitos fuertes que, en agua, se ionizan por completo en iones*. El anión y/o el catión pueden sufrir reacciones ácido-base con el agua (reacción de hidrólisis) modificando el pH de la disolución.

En esta experiencia prepararemos diversas disoluciones acuosas de sales iónicas y determinaremos su pH con papel de pH (papel indicador).

MATERIAL Y REACTIVOS

Material	Reactivos
6 tubos de ensayo	Nitrato de sódio, NaNO₃(s)
Gradilla	Carbonato de potasio, K ₂ CO ₃ (s)
Pipetas Pasteur (cuentagotas)	Acetato de sodio, NaCH₃COO(s)
Varilla de vidrio	Cloruro de amonio, NH ₄ Cl(s)
6 trocitos de papel indicador de, aproximadamente, 5 mmx5 mm	Sulfato de aluminio, Al ₂ (SO ₄) ₃ (s)

MÉTODO EXPERIMENTAL

Disponer una gradilla con seis <u>tubos de ensayo limpios</u>. En cinco de ellos, disolver en agua una pequeña cantidad de cada una de las sales siguientes: NaNO₃, K₂CO₃, NaCH₃COO, NH₄Cl y Al₂(SO₄)₃. En el sexto tubo añadir unos 5 mL de agua.

Colocar los seis trozos de papel indicador sobre una superficie vítrea limpia y seca (superficie posterior de un vaso de precipitados). Para medir el pH, introducir la punta de una varilla de vidrio limpia

Práctica 4. Propiedades ácido-base de las sales: Hidrólisis

IV-2

y seca en la disolución a medir y mojar un trozo de papel indicador. Anote de qué color se torna dicho

papel y asegúrese de limpiar y secar bien la varilla de vidrio antes de introducirla en otras disoluciones,

para evitar contaminarlas. Repita el procedimiento con cada una de las disoluciones y anote los

resultados. Cada trozo de papel indicador solo vale para una medida. Compruebe el pH del agua utilizada

y téngalo en cuenta en sus conclusiones.

Complete las cuestiones indicadas en: 2, 3 y 4 antes de acudir al laboratorio

Número de mesa:	
APELLIDOS:	NOMBRE:

1.- Complete el siguiente cuadro.

Sal	Nombre de la sal	Color del papel indicador	pH de la disolución	Carácter ácido-básico de la disolución
NaNO ₃				
K ₂ CO ₃				
NaCH ₃ COO				
NH ₄ Cl				
Al ₂ (SO ₄) ₃				

2.- Escriba las *reacciones de ionización* de cada una de las cinco sales consideradas. Indique el **estado físico** de cada una de las especies que intervienen.

Reacciones de ionización			
$NaNO_3(s) + H_2O(l) \longrightarrow Na^+(ac) + NO_3^-(ac)$			
K ₂ CO ₃ (s) +			
NaCH ₃ COO			
NH ₄ Cl			
$Al_2(SO_4)_3$			

3.- Justifique, para cada disolución, el ión o iones que sufren hidrólisis (cuando proceda) y escriba los equilibrios de hidrólisis correspondientes. Justifique los valores de pH observados.

Sal	Ion que se hidroliza Justificación	Equilibrio de hidrólisis Justificación
NaNO ₃	Na ⁺ : ácido conjugado del NaOH (base fuerte); <u>no</u> se hidroliza. NO ₃ ⁻ :	
K₂CO₃	K ⁺ : CO₃ ⁼ :	
NaCH₃COO	Na [†] : CH₃COO [−] :	
NH₄CI	NH ₄ ⁺ : ácido conjugado del NH ₃ (base débil); se comporta como ácido débil y <u>sí se hidroliza</u> . Cl¯:	$NH_4^+(ac) + H_2O(I) \xrightarrow{\longleftarrow} NH_3(ac) + H_3O^+(ac)$ El ion H_3O^+ es responsable del pH ácido
Al ₂ (SO ₄) ₃	Al ³⁺ : SO ₄ ⁼ :	

4.- Escriba las expresiones de las constantes de hidrólisis, Kh, y **calcule el valor numérico** de las mismas. $Datos: Ka_2(H_2CO_3) = 5,6\cdot10^{-11}; Ka(CH_3COOH) = 1,8\cdot10^{-5}; Ka(Al(H_2O)_6^{-3+} = 1,4\times10^{-5}; Kb(NH_3) = 1,8\cdot10^{-5}.$

Expresión de Kh y valor numérico

$$K_h(CO_3^=) =$$

$$K_h(CH_3COO^-) =$$

$$K_a(NH_4^+) = \frac{[NH_3][H_3O^+]}{[NH_4^+]} \frac{[OH^-]}{[OH^-]} = \frac{K_w}{K_b(NH_{3)}} = \frac{1.10^{-14}}{1.8 \cdot 10^{-5}} = 5.55 \cdot 10^{-10}$$

$$K_a(AI(H_2O)_6^{3+}) =$$

FUNDAMENTO TEÓRICO

Las sales son electrolitos fuertes que se ionizan por completo en agua para formar los correspondientes iones. El término hidrólisis de una sal se utiliza para describir la reacción ácido-base, del anión y/o del catión que proceden de la sal, con el agua. El pH de la disolución resultante dependerá de esa reacción de hidrólisis.

En general podemos decir que:

- (a) Las sales cuyos iones provienen de un ácido fuerte y de una base fuerte no se hidrolizan (sus iones no reaccionan con el agua, sólo se solvatan) y sus disoluciones son neutras. Ejemplos de este tipo son: NaCl, KBr, SrI₂, Ca(NO₃)₂, Ba(ClO₄)₂ entre otros.
- (b) La disolución de una sal derivada de un ácido fuerte y una base débil es ácida, debido al carácter ácido del catión. Ejemplos de este tipo son: NH₄Cl y NH₄NO₃. Para esta última los procesos a considerar son:

IONIZACIÓN DE LA SAL: $NH_4NO_3(s) + H_2O(l) \longrightarrow NH_4^+(ac) + NO_3^-(ac)$

EQUILIBRIO DE HIDRÓLISIS: $NH_4^+(ac) + H_2O(I) \xrightarrow{\bullet} NH_3(ac) + H_3O^+(ac)$

La K_a vendrá dada por: $K_a(NH_4^+) = \frac{[NH_3][H_3O^+]}{[NH_4^+]}$; Esta constante se relaciona con la $K_b(NH_3)$ teniendo en

cuenta el producto iónico del agua $[K_w = [H_3O^+][OH^-]$:

$$K_a(NH_4^+) = \frac{[NH_3][H_3O^+]}{[NH_4^+]} \frac{[OH^-]}{[OH^-]} = \frac{K_w}{K_b(NH_3)}; \quad K_a(NH_4^+) \times K_b(NH_3) = K_w$$

Otro tipo de cationes ácidos son los *cationes hidratados de iones metálicos pequeños y de elevada carga* como el Al³⁺. En disolución acuosa el ión aluminio se asocia con seis moléculas de agua y el correspondiente equilibrio ácido-base o reacción de hidrólisis da lugar a iones H₃O⁺:

$$AI(H_2O)_6^{3+}(ac) + H_2O(I) \longrightarrow AI(H_2O)_5(OH)^{2+}(ac) + H_3O^+(ac)$$

- (c) La disolución de una sal derivada de un ácido débil y de una base fuerte es básica, debido al carácter básico del anión. Algunos ejemplos son: KCH₃COO, KNO₂, NaF, NaClO y CaCO₃ entre otros.
- (d) Si las sales provienen de un ácido débil y de una base débil al disolverse, en agua, producen iones (catión y anión) que se hidrolizan y, el pH de la disolución dependerá de las fuerzas relativas del ácido débil y de la base débil.