MODELO MEDEAS-WORLD. Límites climáticos y energéticos (post 3 de 3)

Además del Cambio Climático que hemos visto en el Post 2 existen otros factores limitantes.

MEDEAS tiene en cuenta límites al flujo de los recursos energéticos fósiles, nucleares y renovables y tiene en cuenta las implicaciones en las infraestructuras necesarias de acuerdo a cómo evolucione la Tasa de Retorno Energético (EROI): si el EROI del sistema energético global disminuye, se requieren más infraestructuras energéticas para dar los mismos servicios energéticos a la sociedad.

Con unas infraestructuras dadas, el efecto de una disminución del EROI es pues cubrir menos energía final en el sistema. El efecto introducido es dinámico, de tal forma que no importa el nivel final del EROI del sistema (siempre que sea mayor que uno), sino la velocidad de variación de ese EROI. Si se ponen demasiado rápidamente infraestructuras energéticas de baja EROI, baja el EROI del sistema rápidamente con un efecto de inadaptación mayor que si se va más lento. Para facilitar las cosas a los escenarios, MEDEAS da por supuesto que tenderán a crecer más rápido los nuevos sistemas energéticos renovables con mayor EROI; algo que no es así siempre pero que supone un sistema más inteligente del que tenemos ahora.

Para la realimentación de los flujos energéticos, la idea principal es dejar al usuario la opción de escoger posibles curvas de producción máxima anual para los recursos no renovables, atendiendo a la literatura basada en las curvas de Hubbert o similares. Se toman distintas curvas como puntos de partida y si la demanda esperada de alguno de los recursos no renovables supera en algún momento la oferta máxima de acuerdo a esas curvas de Hubbert, se limita a esa oferta y luego se filtra a la economía. Para las fuentes renovables se escoge un límite máximo (por defecto bajo respecto a la literatura y de acuerdo a nuestras publicaciones, aunque no va a tener mucha influencia), y se escoge un crecimiento deseado que se va matizando por la EROI de la fuente concreta.

Se tiene en cuenta además, y de manera por ahora muy conservadora, las necesidades de almacenamiento y de sobrecapacidad a añadir (con sus gastos en infraestructuras materiales y energéticos) para tener en cuenta la intermitencia de estas fuentes. Algunos sistemas o procesos energéticos que bajan muy rápidamente la EROI del sistema en cada escenario no se tienen en cuenta o se minimizan (almacenamiento de CO2, transformación del carbón en líquidos), tampoco se consideran “milagros” energéticos tipo “fusión nuclear con alta EROI”, pero se considera  un aumento de la eficiencia global (a través de una mejora en la intensidad energética), algo que es coherente con el pasado siempre que el sistema crezca, pero más dudoso si el sistema se estanca o decrece. Además, en algunas tecnologías se le añade una mejora a esta mejora global automática.

El resto de Warnings que atendíamos en el post 1 de esta serie se mantienen como tales para seguir manteniendo abierta la discusión y, sobre todo, por la dificultad de generar realimentaciones. Por ejemplo, siguiendo el esquema utilizado para los recursos fósiles energéticos podríamos haber tomado curvas de Hubbert análogas para recursos minerales, pues en algunos de ellos vemos que se sobrepasan las Reservas conocidas. Sin embargo, por seguir generando un modelo conservador, no lo hemos realimentado en base a que la incertidumbre sobre las Reservas y Recursos de los minerales es bastante mayor que los mejor estudiados petróleo, gas natural y carbón, y en base a que la sustitución por otros minerales o la tasa de reciclado permite en teoría –aunque a costa de organización y energía- alejar muchos de esos picos de producción más allá de las décadas de 2030-2050, que es donde ya encontramos las restricciones al crecimiento en todos los escenarios de MEDEAS con las realimentaciones ya hechas.

Es decir, los resultados de MEDEAS para los distintos escenarios hay que tender a verlos como curvas máximas, la realidad probablemente se sitúe por debajo mientras se mantengan las hipótesis de partida.

El mismo razonamiento se aplica al resto de Warnings (uso de agua y suelos por ejemplo). Y se aplicaría a todo lo que no hemos modelado en MEDEAS aún (mundo financiero, desigualdad humana, pérdida masiva de biodiversidad, disrupción de otros ciclos biogeoquímicos además de los que dan lugar al cambio climático, etc.).

Estos son los escenarios BAU y Escenario 2 cuando está MEDEAS-World con las tres realimentaciones: Recursos Energéticos, EROI (estándar) y Cambio Climático (intermedio entre débil y fuerte):

Figura 10. Incremento de temperatura respecto a la preindustrial en los escenarios BAU y Escenario2 a lo largo del siglo XXI.

 

En la Figura 10 observamos que antes del 2035 se cruzará el límite de los 1.5ºC, pero el Escenario2 consigue no sobrepasar los 2ºC. Esta observación vale para todos los escenarios que hemos elaborado: no se evita en ninguno de ellos que se sobrepase el límite de los 1.5ºC a lo largo de este siglo.

Y también de forma generalizada: todos los escenarios ensayados terminan haciendo que la economía deje de crecer para luego decrecer fuertemente a lo largo de este siglo:

Figura 11. Renta global en los escenarios BAU y Escenario2.

 

El Escenario 2, al evitar sobrepasar los 2ºC y aunque ralentiza su crecimiento económico, no evita el colapso del sistema energético-económico mundial en la segunda mitad del siglo XXI.

El enorme esfuerzo que supone el Escenario 2 pareciera quedar en vano:

Figura 12. Millones de Hectáreas ocupadas por infraestructuras solares e hidroeléctricas en el escenario BAU y Escenario2.

 

Las infraestructuras terminan cayendo porque la economía cae, dejando de demandarlas. En la Figura 12 vemos que para el Escenario 2 estaríamos ocupando más de 100 Millones de hectáreas en el mundo con pantanos y plantas fotovoltaicas, lo que supera todas las infraestructuras existentes de todo tipo en todo Europa en el momento presente.

 

Figura 13. Potencia instalada en baterías eléctricas para los escenarios BAU y Escenario2

 

MEDEAS trata de cubrir las necesidades de almacenamiento eléctrico generales primero con bombeo hidráulico inverso y luego con baterías eléctricas. Las necesidades para el transporte las cubre con éstas últimas. MEDEAS, en el Escenario 2, llega a tener una flota de 600 millones de vehículos eléctricos, muchos menos que la flota actual de vehículos fósiles, pero fracasa en el empeño.

Los subsistemas se vienen abajo en todos los escenarios por la confluencia de las tres realimentaciones estudiadas. El intento de evitar el Cambio Climático a base de una sustitución rápida del sistema energético fósil en uno renovable, refuerza las otras realimentaciones limitantes: si lo hacemos muy rápido necesitamos mucha energía (fósil al principio) para extraer y procesar los minerales y materiales de las nuevas infraestructuras, lo que atrae los picos de materiales y hace descender rápidamente las Tasas de Retorno Energético. El descenso de la tasa de retorno exige, para cubrir los consumos que demanda la sociedad fuera del propio sistema energético, añadir una sobrecapacidad de infraestructuras que requieren además unas infraestructuras extra y materiales extra para el almacenamiento de la electricidad. Como el Cambio Climático no desaparece, aunque suponga un mucho menor lastre, el sistema no puede evitar la caída, lo hace desde un sitio más alto y lo hace más rápido, generando la intuición de que la adaptación necesaria posterior sería mucho más difícil (“¿engordar más para morir peor?”).

Las tensiones que resultan en el sistema aparecen más allá de indicadores económicos:

Figura 14. Promedio mundial del Índice de Desarrollo Humano.

 

Dada la correlación actual que existe entre el Índice de Desarrollo Humano y la energía disponible, MEDEAS modeliza el indicador IDH de las Naciones Unidas para los distintos escenarios. Se considera un índice de desarrollo humano alto a partir de 0.8 (el que disfrutamos los países europeos por ejemplo). Los 4 países más empobrecidos del mundo bajo este indicador son Burkina Faso (0.40), Chad (0.40), Níger (0.35) y la República Centroafricana (0.35). MEDEAS no regionaliza ni entiende por ahora de desigualdad humana, por lo que es “optimista” acerca de cualquier posible warning/tensión/límite que podamos imaginar que provenga de ellos.

 

Podemos congratularnos al pensar que el modelo MEDEAS puede mantener el crecimiento económico y energético global en los escenarios de rápida transición renovable hasta al menos el 2050 (aunque con crecimientos que se van ralentizando hacia una economía estacionaria), que es el horizonte temporal para el que de hecho está diseñado MEDEAS. Podemos pensar que a partir de ese momento nuevas transiciones energéticas (renovables no imaginadas aún, fusión nuclear, reactores rápidos de fisión nuclear) o un cambio profundo en la matriz económica, permitiría salir de la tendencia sistemática al colapso que observamos.

Pero lo que en realidad observamos, salvo una fe “creacionista” en milagros tecnológicos u organizativos, es que cuanto más se retrasa la caída, más rápidamente viene esta (efecto Séneca). Algo que una y otra vez encontraron y discutieron ya los Meadows en sus Límites al Crecimiento y revisiones posteriores. MEDEAS refina pero corrobora las principales conclusiones de los Límites al Crecimiento: ya no es evitable el decrecimiento de variables como la energía, la renta mundial, etc. y las cuestiones que ahora se abren son de adaptación al decrecimiento material y energético del sistema y la evitación de los colapsos más catastróficos.

Es verdad que MEDEAS no habilita de hecho políticas de adaptación o de gestión de la demanda, pero pensar en estas debe ser en el contexto del decrecimiento del sistema.

Para los recalcitrantes que piensen que MEDEAS es pesimista por “colapsista”, recordemos que:

El Escenario 2 se come entre el 60% y el 250% (según minerales) de las Reservas conocidas de: cadmio, cobre,  cromo, litio, molibdeno, neodimio, plata y zinc (no todo se lo comen las renovables, pues suponemos que el sistema que crece requiere más de los minerales en extrapolación al pasado). Reciclar a altas tasas requiere organización y energía. Difíciles de imaginar en un sistema en decrecimiento rápido. Y si no colapsara el sistema, las reservas se las comería antes y en mayor cantidad…

En los escenarios no hay realimentaciones limitantes por el uso de suelos y agua. No hay realimentaciones limitantes por la pérdida de biodiversidad, la contaminación, etc. No hay corrupción, burbujas financieras, tensiones geopolíticas, etc.

En los escenarios suponemos que pase lo que pase la eficiencia del sistema para transformar energía en economía siempre va a seguir aumentando (la intensidad energética global va mejorando).

Las gráficas anteriores no han considerado ningún efecto de Tasas de Retorno Energético más allá del concepto estándar del mismo, permitiendo que siga funcionando el sistema con EROI < 5 (lo discutiremos en un próximo post).

Puede parecer que MEDEAS es desesperante porque no hay forma de salvar el sistema de un fuerte decrecimiento o quizás incluso colapso civilizatorio. Pero no es así salvo que uno desee verlo así. MEDEAS muestra la necesidad de un cambio de paradigma económico/energético/material y la necesidad de una fortísima adaptación a un mundo en el que va a decrecer pronto, o muy pronto, los indicadores actuales de economía y energía. MEDEAS no tiene fe ciega en la tecnología y calificarlo como “optimista” o “pesimista” tiene más que ver con el optimismo o pesimismo existencial de cada cual.

 


Expertos asustados y realimentaciones

Quizás los expertos de cada campo quieren llamar la atención para que los escuchemos y por eso exageran y ven solo sus propios ombligos. Pero en realidad los informes de los expertos tienden a ser conservadores por dos razones fundamentales:

1. Porque  hay una fuerte tendencia a que el experto lo sea en un campo realativamente pequeño e ignore en la práctica y en su visión mental (sesgos cognitivos) el resto de temas. En realidad no hay expertos del sistema como conjunto; yo solo conozco a un puñado de personas en todo el Planeta (¿por lo agobiante que es?) que traten de tener en la cabeza las implicaciones simultáneas y en realimentación de algunas “variables” importantes como las de la figura:

 

2. Los expertos suelen publicar en revistas científicas en las que existen fuertes tendencias a aumentar los sesgos cognitivos relacionados con la Autoridad, el Promedio, seguir la “moda”, etc. (esto lo ampliaremos en otros posts), con lo que resultados que pueden sonar radicales no son fácilmente admitidos (nuestro grupo está embarcado en pedir financiación para nuestras investigaciones y no se nos ocurre titular el proyecto así: “Sistema de transporte en lo que quede de España durante el Colapso de la Civilización: escenarios y modelos de dinámica de sistemas hasta el 2050”).  Además está el hecho de que el científico experto en inteligibilidad de la palabra en recintos acústicos o en espectroscopía Raman o en lo que sea (la inmensa mayoría de nuestros científicos) tiende no solo a ignorar el resto de campos, sino que existe cierta prepotencia a la hora de juzgar el campo de los demás, sobre todo si este tiene implicaciones humanas, sociales, económicas o políticas en las que todo ser humano se considera experto; es decir, si como físico yo cuento a alguien algo sobre inteligibilidad de la palabra en recintos acústicos me escuchará y si soy hábil, con cierto interés. Pero si le hablo de las consecuencias que puede tener el hecho de que las energías renovables están muy limitadas para sustituir a las fósiles, entonces la discusión está servida con el químico, el economista, el taxista, el peluquero, mi tía o mi sobrino, incluso pondré muy nervioso al experto en parques fotovoltaicos o eólicos. Sencillamente el segundo tema es demasiado importante para ignorarlo y todos ya tenemos formadas ciertas opiniones.

En cualquier caso, si los expertos de cada campo no han perdido los nervios, basta con hacer el esfuerzo de leer sus informes globales o simplemente citar algunas de sus frases para asustarse: caos climático, pico del petróleo, 6ª Gran Extinción… Y lo peor no es eso, son, una vez más, las realimentaciones.

Los modelos de dinámica de sistemas que hemos trabajado en el Grupo de Energía y Dinámica de Sistemas de la UVa, tienden a dar situaciones críticas cuando se analiza el cenit de petróleo y sus consecuencias; si al problema energético se le añaden realimentaciones con el caos climático, incluso siendo muy optimistas con una transición renovable rápida y sin tener en cuenta otros problemas y sobrepasamientos, los modelos tienden a dar resultados de colapso.

Modelos como los famosos de Los Límites del Crecimiento de los Meadows (que la realidad se empeña en seguir tras más de 40 años) arrojan un pico de “Civilización” a finales de la década que viene. Pero ellos mismos advirtieron que fueron optimistas (por ejemplo no integraron el problema de las élites).

Mis modelos de energía-caos climático de 2008 no excesivamente optimistas con las renovables ponen ese pico en 2010-2020. Históricamente, ya.

Nadie ha modelado las interacciones entre los seis recuadros (hay más) que destaco en la figura, pero uno intuye que las realimentaciones positivas implican un colapso civilizatorio relativamente rápido (décadas, no muchas generaciones humanas):

Ejemplos (imagine cómo):

1. + caos climático + pérdida de biodiversidad

+ pérdida de biodiversidad – funciones ecosistémicas

- funciones ecosistémicas + caos climático

 

2.

+ desigualdad + inestabilidad geopolítica

+ inestabilidad + élites corruptas

+ élites corruptas + crisis energética

+ élites corruptas + caos climático

+ élites corruptas + desigualdad

 

3.

+ caos climático + desigualdad

+ caos climático + hambre

 

4.

+ crisis energética + desigualdad

+ crisis energética + crisis de agua

+ crisis energética + crisis de suelos y minerales

+ crisis energética + inestabilidad geopolítica

 

5.

+crisis de agua + desigualdad

+ crisis de agua + hambre

 

6.

+ desigualdad + crisis de suelos

+ desigualdad – biodiversidad

+ desigualdad  + riesgos de pandemias

 

7.

+ inestabilidad geopolítica + riesgo de guerra atómica, química o biológica

 

Romper (casi)todos esos círculos viciosos a un tiempo es fácil e inevitable:

Se llama colapso de Civilización.

 Carlos de Castro Carranza.


¿Lograremos evitar el colapso ecológico-social?

La respuesta simple y directa a la pregunta es No.

Y una razón es porque todo sistema que crece exponencialmente se enfrenta antes o después con algún tipo de límite natural (sea una reacción nuclear en cadena, el crecimiento de población bacteriana en una placa petri o el uso de energía, producción industrial, uso de agua o población humana).

 

Si se sobrepasan los límites temporalmente, es inevitable el colapso (línea roja) o la oscilación (línea amarilla), en general además se deteriora el límite y este disminuye al aproximarnos al límite y sobrepasarlo (oscilación decreciente).

 

  • Así hemos sobrepasado el límite de concentración de CO2 en la atmósfera y hoy estamos en las 400ppm.

 

  • Hemos sobrepasado el límite del indicador (conservador por lo demás) de la Huella Ecológica que es inferior a 1 pues no podemos usar toda la Tierra en beneficio exclusivo humano, necesitamos una biosfera “natural”, y además, como estamos degradando los ecosistemas, este límite va disminuyendo (menos bosques o suelos productivos, más desertización, etc.), hoy nuestra Huella Ecológica supera el 1,5 (necesitaríamos 1,5 planetas Tierra para estar por debajo del límite y cálculos propios menos conservadores y optimistas que los que utiliza este indicador nos situarían en la necesidad de 3-10 planetas como el nuestro).

 

  • Hemos aumentado la tasa de extinción de especies entre 100 y 1000 veces (tasa que se está acelerando con el caos climático) a niveles que superan las extinciones masivas del pasado.

 

  • Tenemos una desigualdad entre humanos enorme, y recientes modelos sitúan este hecho como un problema que lleva a hacer casi inevitable el colapso .

Y hay más que veremos en otros posts.

Y si cada grupo de expertos ve gravísimos problemas en su ámbito, el problema mayor es que estos sobrepasamientos se realimentan positivamente unos a otros. Haciendo ya inevitable un descenso rápido de las variables en juego (energía, producción industrial, productos de la fotosíntesis, agua, suelos y, finalmente, población).

 

Carlos de Castro Carranza


Pensamiento sistémico y dinámica de sistemas: ¿Renovablequé?

Un esquema de realimentaciones típico del pensamiento de la dinámica de sistemas:

Algunas respuestas ante el problema del pico del petróleo (que nos preocupa sobre todo por su impacto sobre la economía) están siendo tecnológicas (o geopolíticas, pero ninguna va al problema raíz).

El fracking y los biocombustibles son repuestas energéticamente absurdas y económicamente caras además de ecológicamente negativas.

El carbón no sustituye directamente al petróleo y es un desastre ecológico.

Sólo las Renovables (también caras) son una respuesta interesante para resolver el problema del clima, pero pueden (lo hacen ya) generar otros problemas; y lo hacen porque son tecnologías que se están tratando de aplicar en el mismo esquema de mitos culturales que son los que generan el problema raíz.

 

La dinámica de sistemas con un esquema mental como el de la figura anterior, pensaría primero en las realimentaciones y trataría luego de cuantificarlas:

Léase así: el peak oil (pico y posterior descenso del petróleo) tiende a llevarnos al pico económico (pico y posterior descenso de la economía mundial). La respuesta inicial a eso es un incremento en el uso de biocombustibles, carbón, técnicas de fracking para aumentar la producción de petróleo, y renovables. Más biocombustibles implican más desigualdad, caos climático y acercamiento a los picos y posteriores descensos del agua, de los suelos y de la biodiversidad (nuestro Grupo ha demostrado, por ejemplo, que la Huella Ecológica de los biocombustibles actuales es más del doble que la Huella Ecológica de los combustibles fósiles por unidad de energía neta proporcionada). La desigualdad está aumentando gracias a los biocombustibles, por ejemplo al acaparamiento de tierras en el Sur por parte de empresas y gobiernos del Norte o de países “emergentes” (China, Emiratos, Arabia Saudí…). Y uno podría esperar lo mismo de proyectos solares y eólicos en un futuro cercano (?o es que el proyecto DESERTEC no quiere acaparar desiertos africanos para servir los interese europeos, y este neo-colonialismo ya lo hemos vivido cientos de veces como para saber donde conduce?). El mundo real es sistémico y no una ensoñación tecnológica.

Sólo la respuesta renovable (viento y solar) de entre las “soluciones” energéticas que se están dando tiene una realimentación buena hacia uno de los problemas, el caos climático (lo que no significa que no puedan influir en el clima dependiendo de su escala), pero está generando o puede hacerlo, aumentos en otros problemas. Por ejemplo, la ocupación directa de suelos o el uso de minerales que requieren éstas energías es superior a las que requieren las energías fósiles por unidad de energía neta que proporcionan a la sociedad. La complejidad tecnológica de un parque solar o eólico es mayor que la de una central térmica de carbón, lo que hoy implica que en vez de ser una fuente energética descentralizada social y económicamente sea lo contrario (casi todos los países y ciudadanos tenemos sol suficiente, pero no los minerales y la tecnología necesarios, la dependencia no es menor -es otra- que la que genera la geografía del petróleo). El viento es compartido (si lo frenas en los pirineos no lo disfrutarán igual los franceses) como los ríos. Las renovables están surgiendo en el mismo esquema mental y cultural que conduce al desastre humano, lejos de ser solución hoy son parte del problema.

 

Quizás porque queremos que el Titánic no se hunda, muchos movimientos de Transición ven sólo el peak oil y el climatic chaos, y ojalá fueran los únicos dos problemas, porque las renovables podrían intentar solucionar parcialmente ambos. Pero no es así.

 Carlos de Castro Carranza


’2052′: integrando límites en un “mundo lleno”

“Si pudiera persuadirte de sólo una cosa, elegiría la siguiente: el mundo es pequeño y frágil, y la humanidad es enorme, peligrosa y poderosa. Ésta es una total inversión de la perspectiva bíblica sobre la humanidad, y de la lógica que hemos aplicado como especie desde nuestra presencia en la Tierra. Pero ésta es la perspectiva que necesitamos tomar si queremos estar seguros de que la sostenibilidad emerja o, al menos, que el mundo que conocemos sobreviva un par de siglos más.” 

Con estas palabras abre Jorgen Randers un artículo que presenta los resultados principales del estudio2052: Un pronóstico global para los próximos cuarenta años” (2052: A global forecast for the next forty years) del Club de Roma. Para realizar este impresionante estudio, que bate todos los récords de horizontes de predicción temporal usuales, ha utilizado la misma herramienta que viene utilizando desde los años 70 como co-autor de los sucesivos informes sobre “Los Límites del Crecimiento” [Meadows et al,. 1972, 1992, 2004]: la dinámica de sistemas. Publicado en 2012, este estudio parece haber pasado relativamente inadvertido en nuestro país y en la blogosfera en español en general. Es importante subrayar la diferencia entre el ejercicio realizado entre este estudio (predicción-forecast) frente al análisis de escenarios de los anteriores trabajos (por cierto que estos estudios atraviesan una auténtica fase de “recuperación en la Academia”, tras un debate incompleto y sesgado políticamente en el pasado como nos cuenta Jorge Riechmann en su blog).

La idea principal que pretende transmitirnos Randers se puede ilustrar de forma intuitiva y directa:

“]

(En cuanto al impacto de la extracción de los recursos fósiles no convencionales ya se ilustró en la entrada Petropolis)

La siguiente imagen ilustra a la perfección el post anterior Sueños tecnológicos contra la pared de la realidad: el caso de la energía solar eléctrica.

(La degradación del medio ambiente ha sido apuntada como una de las causas del actual conflicto sirio: ver artículo en The Guardian Peak oil, climate change and pipeline geopolitics driving Syria conflict).

Y como ejemplo paradigmático de cambio global, el cambio climático:

(Fuente imágenes: http://climate.nasa.gov/state_of_flux)

(Daly 2005)

Y por último mi preferida:


Los impactos producidos por nuestro actual modelo de desarrollo se pueden explicar así mismo mediante pormenorizados estudios científicos, como por ejemplo los muy interesantes realizados por [Röckstrom et al., 2009]:

(Rockström et al., 2009) Más allá de los límites. El anillo verde representa el umbral seguro propuesto para los 9 límites planetarios identificados (cambio climático, pérdida de biodiversidad, interferencia con los ciclos del nitrógeno y el fósforo, reducción de la capa de ozono, acidificación del océano, uso de agua, cambios en el uso de la tierra, contaminación química y aerosoles atmosféricos. Los niveles en rojo representan la estimación del nivel actual para cada variable. Los límites en 3 de los sistemas (cambio climático, pérdida de biodiversidad, interferencia con el ciclo del nitrógeno) ya han sido sobrepasados.

Forzosamente, la consideración de un “mundo lleno” (full world, en palabras de [Daly 2005]) trastoca las leyes (dominantes) de la ciencia socio-económica moderna que están basadas en el paradigma del “mundo vacío” y son sólo válidas, por lo tanto, en ese contexto. En ciencia es fundamental la escala; magnitudes que son despreciables cuando son muy pequeñas se vuelven fundamentales al crecer en relación al resto.

Involuntariamente esta situación me recuerda a la irrupción de la ley de la relatividad en la física moderna (con los cambios que ésta ha supuesto posteriormente), y a una ecuación en particular: la de la velocidad relativa entre 2 cuerpos. Según la física clásica, la velocidad relativa (u) entre dos cuerpos que circulan a velocidades respectivas v y w sería simplemente u = v +w (nos ahorramos los vectores). Es decir, dos coches que circulan a 50 km/h en sentido contrario “verían” que el otro se desplaza a 100 km/h.

Sin embargo, esta ecuación deja de ser válida cuando la velocidad de esos cuerpos se acerca a la de la velocidad de la luz (c). Es decir, que la relación de escalas cambia, y la ecuación correcta (la anterior era por tanto sólo una aproximación cuando vw << c^2) es:

u={\cfrac  {v+w}{1+{\cfrac  {vw}{c^{2}}}}}

(para aquellos que quieran repasar la física de Bachillerato en wikipedia lo tienen con más detalle)

En los sistemas socio-económicos, esto equivale a “recuperar” el factor tierra, entendido en su sentido amplio como recurso (energía, materiales, agua, suelos, etc.), que desapareció de las ecuaciones hace unos 200 años [Naredo 2010]. Una vez recuperada la noción de límite, el siguiente paso es convenir en que los diferentes límites ([Rockström et al, 2009] identifica hasta 9, entre ellos el cambio climático pero también la pérdida de biodiversidad, la alteración de otros ciclos como el del nitrógeno o el fósforo, la acidificación del océano, etc.) están estrechamente relacionados entre sí, y que el actuar aisladamente sobre uno tan sólo precipita la llegada de otro un poco más tarde.

Así, para intervenir (con éxito) en sistemas complejos se debe actuar de forma sistémica. Este es uno de los pilares de los estudios del Club de Roma; y cuya aplicación hace concluir a Randers en 2052 que, asumiendo que el actual sistema siga funcionando guiado por las mismas dinámicas (que él sintetiza en 2:  cortoplazismo de las políticas y retraso en la toma de decisiones), nos dirigimos a un escenario de tipo overshoot&collapse (sobrepaso y colapso) provocado pricipalmente por nuestra incapacidad de mitigar el cambio climático en una escala suficiente (esto es un escenario tipo 2 de colapso por contaminación de [Meadows et al,. 1972, 1992, 2004]).

Todos estas caracterísitcas están integradas en el report 2052, cuyos interesantes y sugerentes  hipótesis, resultados e implicaciones esperamos analizar en otro post (para aquellos impacientes, abajo en la sección de referencias hay documentación en inglés y castellano).

>> Leer la 2ª parte del post: “’2052′: integrando límites en un “mundo lleno” (2)

Iñigo Capellán Pérez

Referencias

[Daly 2005] Daly, Herman E. “Economics In A Full World.” Scientific American 293, no. 3 (2005): 100–107. doi:10.1038/scientificamerican0905-100.

[Naredo 2010] Naredo Pérez, José Manuel. Raíces Económicas Del Deterioro Ecológico Y Social: Más Allá de Los Dogmas. Segunda edición corregida y aumentada. La primera edición es de 2006. Siglo XXI de España Editores, S.A., 2010.

[Randers 2012] Randers, Jorgan. 2052: A Global Forecast for the next Forty Years. Chelsea Green Publishing Company, 2012.

[Rockström et al,. 2009] Rockström, Johan, Will Steffen, Kevin Noone, Åsa Persson, F. Stuart Chapin, Eric F. Lambin, Timothy M. Lenton, et al. “A Safe Operating Space for Humanity.” Nature 461, no. 7263 (September 23, 2009): 472–475. doi:10.1038/461472a.